Targeting aberrant DNA double-strand break repair in triple-negative breast cancer with alpha-particle emitter radiolabeled anti-EGFR antibody.
نویسندگان
چکیده
The higher potential efficacy of alpha-particle radiopharmaceutical therapy lies in the 3- to 8-fold greater relative biological effectiveness (RBE) of alpha particles relative to photon or beta-particle radiation. This greater RBE, however, also applies to normal tissue, thereby reducing the potential advantage of high RBE. As alpha particles typically cause DNA double-strand breaks (DSB), targeting tumors that are defective in DSB repair effectively increases the RBE, yielding a secondary, RBE-based differentiation between tumor and normal tissue that is complementary to conventional, receptor-mediated tumor targeting. In some triple-negative breast cancers (TNBC; ER(-)/PR(-)/HER-2(-)), germline mutation in BRCA-1, a key gene in homologous recombination DSB repair, predisposes patients to early onset of breast cancer. These patients have few treatment options once the cancer has metastasized. In this study, we investigated the efficacy of alpha-particle emitter, (213)Bi-labeled anti-EGF receptor antibody, cetuximab, in BRCA-1-defective TNBC. (213)Bi-cetuximab was found to be significantly more effective in the BRCA-1-mutated TNBC cell line HCC1937 than BRCA-1-competent TNBC cell MDA-MB-231. siRNA knockdown of BRCA-1 or DNA-dependent protein kinase, catalytic subunit (DNA-PKcs), a key gene in non-homologous end-joining DSB repair pathway, also sensitized TNBC cells to (213)Bi-cetuximab. Furthermore, the small-molecule inhibitor of DNA-PKcs, NU7441, sensitized BRCA-1-competent TNBC cells to alpha-particle radiation. Immunofluorescent staining of γ-H2AX foci and comet assay confirmed that enhanced RBE is caused by impaired DSB repair. These data offer a novel strategy for enhancing conventional receptor-mediated targeting with an additional, potentially synergistic radiobiological targeting that could be applied to TNBC.
منابع مشابه
Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy Ion Beam Radiobiology?
Alpha-particle emitter labeled monoclonal antibodies are being actively developed for treatment of metastatic cancer due to the high linear energy transfer (LET) and the resulting greater biological efficacy of alpha-emitters. Our knowledge of high LET particle radiobiology derives primarily from accelerated heavy ion beam studies. In heavy ion beam therapy of loco-regional tumors, the modulati...
متن کاملAberrant DNA Double-strand Break Repair Threads in Breast Carcinoma: Orchestrating Genomic Insult Survival
Breast carcinoma is a heterogeneous disease that has exhibited rapid resistance to treatment in the last decade. Depending genotype and phenotype of breast cancer, there are discernible differences in DNA repair protein responses including DNA double strand break repair. It is a fact that different molecular sub-types of breast carcinoma activate these dedicated protein pathways in a distinct m...
متن کاملSynthetic Lethal Interactions between EGFR and PARP Inhibition in Human Triple Negative Breast Cancer Cells
Few therapeutic options exist for the highly aggressive triple negative breast cancers (TNBCs). In this study, we report that a contextual synthetic lethality can be achieved both in vitro and in vivo with combined EGFR and PARP inhibition with lapatinib and ABT-888, respectively. The mechanism involves a transient DNA double strand break repair deficit induced by lapatinib and subsequent activ...
متن کاملValproic Acid-Mediated Reduction of DNA Double-Strand Break Reparation Capacity of Irradiated MCF-7 Cells
Introduction H istone deacetylase inhibitors (HDIs), as radiation sensitizing agents, are considered as a novel class of anti-cancer factors, which are studied in various tumor cell-lines. Valproic acid (VPA) is an HDI, which is effectively used in the treatment of epilepsy, migraines, and some particular types of depression. In this study, we evaluated the effects of VPA and ionizing radiatio...
متن کاملTargeting XRCC1 deficiency in breast cancer for personalized therapy.
XRCC1 is a key component of DNA base excision repair, single strand break repair, and backup nonhomologous end-joining pathway. XRCC1 (X-ray repair cross-complementing gene 1) deficiency promotes genomic instability, increases cancer risk, and may have clinical application in breast cancer. We investigated XRCC1 expression in early breast cancers (n = 1,297) and validated in an independent coho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 12 10 شماره
صفحات -
تاریخ انتشار 2013